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Spiking Neural Networks based Rate-Coded Logic
Gates for Automotive Applications in BiCMOS

Hendrik M. Lehmann, Julian Hille, Cyprian Grassmann, Vadim Issakov

Abstract—Spiking Neural Networks (SNNs) represent the third
generation of artificial neural networks. In this work, we evaluate
the core element of SNN, the neuron circuit equivalent, in terms
of temperature robustness for automotive applications. Thanks
to the operating point stabilization, the proposed circuit-level
neuron implementation achieves a broad frequency tuning range
up to 42MHz and operates over a wide temperature range
from −40 °C to 125 °C. At the maximum spiking frequency of
42MHz, the circuit consumes a DC power of only 300nW. We
use the proposed neuron circuit to realize two fundamental logic
gates, AND and OR, by means of analog rate-encoded spiking
neural networks. To the best of the authors’ knowledge, these
are the first reported SNN-based logic gates measured over the
automotive temperature range. We showcase the suitability of
SNN circuit implementation for automotive applications. The
circuits are realized in a 130 nm BiCMOS.

I. INTRODUCTION

ARTIFICIAL Neural Networks (ANNs) is an emerging,
highly relevant research field nowadays. In particular,

the third generation of ANNs, the Spiking Neural Networks
(SNNs) are gaining major attention, as they are inspired by
their biological counterparts and often attempt to achieve
biological plausibility in neuroscience [1], [2]. In many appli-
cations, they seem to be a promising approach, e.g. for pattern
recognition [3]. However, the exact biological plausibility of
a circuit-level neuron emulation is often less important for
technical applications, but rather its reducibility to necessary
neuron functions as well as the applicability to respond prop-
erly in specific cases. In many cases, it is sufficient that the
circuit-level neuron equivalent is able to mimic only some less
complex spiking patterns (e.g. regular and fast spiking), unlike
its biological original, which generates many more additional
patterns (e.g. bursting, chattering, thalamo-cortical spikes) [4].

Most applications are software-driven. Completely analog
SNN implementations, which perform highly complex tasks,
have not been reported yet. Almost all implementations so
far are related to low frequency applications [5]. Only few
works report operation in the radio frequency (RF) domain [6].
Spiking Neural Networks offer more efficient processing and
could therefore be used for pattern recognition of radar targets
or interferences from the raw radar data. Hence, processing
of radar signals after down-conversion into the baseband is a
potential use case for neuromorphic circuits [7]. Automotive
radar applications pose an additional challenge, as circuits
must operate over a wide ambient temperature range of
−40 °C - 125 °C [8].
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Publications reporting implementation of logic gates using
spiking neural networks mainly deal with the XOR gates [9],
[10]. This is related to the fact that the nonlinear properties of
such networks offer a promising approach to solve nonlinear
separation of XOR gates. However, basic AND and OR gates
are also of interest, since they are the basis for most of today’s
digital circuits. To the best of the authors’ knowledge, the
implementation of an analog SNN-based solution for AND
and OR gates has not yet been reported in the literature yet.

In this work, we investigate the applicability of SNN
circuit-level realization for automotive applications. For this
purpose, we propose a modified circuit implementation of the
Izhikevich neuron model. The proposed modification enables
the linear frequency tuning functionality of a neuron. Unlike
in the classical Izhikevich neuron, mimicking all possible
biologically plausible patterns is not targeted here [11]. By
stabilizing the operating point of the circuit, it is intended to
achieve a stable behavior over a wide temperature range. Next,
we derive simple networks using the realized neuron model
to showcase its functionality. Logical AND and OR gates
are implemented in a rate-coded SNN architecture and their
properties are investigated for the automotive applications.

Numerous millimeter-wave radar transceivers are realized
in SiGe BiCMOS technologies [12], [13], as they offer ad-
vantages over CMOS processes in terms of flicker noise, RF
performance over temperature, reliability and cost [14]. Hence,
we realize circuits here in a 130 nm SiGe BiCMOS technology.

II. NEURON DESIGN AND LOGIC GATE CONFIGURATION

A. Modified Izhikevich Neuron

The circuit-level neuron implementation used in this work
has a similar topology as the one reported in [11]. We propose
extending the circuit by an enhanced current mirror. The
proposed circuit is shown in Fig. 1.
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Fig. 1. Schematic of the modified Izhikevich neuron realized in this work.

The authors of the circuit in [11] show an Izhikevich
model, which is capable of mimicking biological patterns
related to different neuronal activities. Generation of various
patterns is based on a instability of the operating point when
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different tuning voltages are applied. However, this is often
not necessary for most applications. Yet, a wide frequency
tuning is more useful, as it allows the circuit to respond
to different input signals at different frequencies. Hence, the
circuit modification in Fig. 1 enables achieving stability of
the operating point even for different tuning voltages. A robust
circuit behavior is obtained over a wide temperature range due
to the enhanced stability.

The transistor sizes of the circuit shown in Fig. 1 in
micrometers are (W/L)M1,9,10,11,12 = (1.4/0.5), (W/L)M2,4,5,7 =
(2/0.72), (W/L)M3 = (1.4/3), (W/L)M6 = (1.4/7),
(W/L)M8 = (1.4/5), (W/L)M13 = (2/0.5), (W/L)M14 =
(2.3/0.5), (W/L)M15,16 = (1.4/1). The capacitance values are
Cm = 17 fF and Cs = 45 fF.

Compared to [11], the basic operation of the circuit remains
the same and will be briefly explained in the following. The
circuit contains a total of 16 transistors and two capacitors Cm
and Cs, which are used to represent the two state variables
of the membrane voltage (M ) and slow variable (S). The
circuit can be divided into three sub-circuits: the membrane
circuit (M1 -M6, M10), the slow variable circuit (M1, M2,
M4, M7 - M9) and the comparator circuit (M11 - M16). In
the membrane potential circuit, a synaptic input current is
integrated via the capacitor Cm, as well as additional internal
currents, which depend on the state of the circuit. In contrast to
the previously described circuits, the current mirror is extended
by two additional transistors (M4, M5) in order to ensure
a stable operating point. The slow variable circuit with the
capacitor Cs works similarly, integrating the currents that are
in relation to M and S. The comparator circuit is used for
the spike generation and creates the pulses (Va and Vb), which
cause a spike reset of the circuit. The tuning variables Vc and
Vd control the reset mechanism and can be used to enhance
the neuron’s frequency sensitivity.

Fig. 2 shows the general functionality of the neuron. If
a sufficiently large input impulse is provided, the neuron
generates an output spike. This corresponds to the biological
behaviour of a regular spiking neuron. The input pulse has an
amplitude of Vin = 400mV and a pulse width of τin = 160 ns,
the tuning variables are set to Vc = 200mV and Vd = 400mV.
The bias voltage and threshold voltages are Vbias = 20mV and
Vth = 250mV. The supply voltage is Vdd = 1.5V.

Fig. 2. Simulated spiking response (red) at the output of the Izhikevich neuron
during continuous triggering by input pulses (blue).

Fig. 3 shows the enabled frequency tuning behavior. A
constant input pulse of τin = 6 µs is applied with an amplitude
of Vin = 300mV. The tuning voltage Vc is swept twice each
time in a time window of τc = 3 µs in the range of up to
Vc = 400mV and Vd for also τd = 6 µs in the range of up to
Vd = 1V. The maximum frequency achieved for the output
spikes is fspike = 42MHz. Fig. 3 shows continuous variation
of the spiking frequency versus a sweep of the tuning voltage.

Fig. 3. Simulated adaptive frequency response (blue) with continuous input
pulse (red) and sweeping of the tuning voltages Vd (orange) and Vc (blue).

In Fig. 4, the spiking behavior is simulated under the same
conditions as in Fig. 2, but now for different spiking times and
temperatures. The simulation is performed for the temperatures
T = −40 °C; 25 °C; 125 °C, to cover the automotive tempera-
ture range [8]. As seen in Fig. 4, the circuit operates reliably
for each of the simulated temperatures. The spiking behavior
is comparable in all three cases. Only the amplitude of the
signals differs within an acceptable range depending on the
ambient temperature. Compared to the reference temperature
of T = 25 °C, the amplitude of Vspike25 = 695mV increases to
a value of Vspike-40 = 897mV at a temperature of T = −40 °C,
which corresponds to an amplitude change of about 29%. At
a high temperature of T = 125 °C, compared to the reference
temperature, the amplitude decreases to Vspike125 = 521mV,
corresponding to a reduction of about 25%. If an appropriate
threshold is applied to detect the spikes, the height of spikes
is sufficiently high to assume neuron’s functionality over the
entire temperature range.

Fig. 4. Simulated comparison of the spike behavior between the reference
temperature with T = 25 °C and the two temperature extremes for automotive
applications of T = −40 °C and T = 125 °C.

B. Logic Gate Configuration

Construction of logic gates using SNN is straightforward,
since it is a simple linear and separable problem. The focus in
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this work is not to compare the SNN-base logic gates with the
conventional CMOS logic, but rather to test applicability of
the proposed neuron in a network configuration for possible
automotive applications. A description of the two network
configurations and the associated encoding procedure is
provided in the following.

1) OR-Gate: The information from a spiking neural net-
work can be decoded in two ways - rate coding and temporal
coding. Rate coding can be implemented as counting the
number of spikes in a certain time frame and interpreting them
accordingly. The temporal coding also records the number
of spikes in a certain time frame, but additionally the time
points carry information. The temporal distance between the
individual spikes serves to encode the data. For the follow-
ing network configuration, rate coding is used, as this is a
practical, fast method to interpret correctly the information of
the network in this case. The implementation of an OR gate
with spiking neurons is shown in Fig. 5. For this purpose, two
input neurons (N1, N2) are used in each case, which form
the input of a possible precedent system. These are driven
at a certain input frequency fin. These inputs can be driven
externally or from the output of another logical, rate-coded
gate. The output signals from the input neurons are fed directly
to the output neuron (N3), synaptic weights are not essential
in this configuration.

N3

N1

N2

A

B

Y

Y

Fig. 5. Network configuration for the OR gate.

The neurons are parameterized in such a way that each input
signal leads to an output spike and, in the case of the output
neuron, each input spike also leads to an output spike. The
coding operates as follows: each input signal with a frequency
of fin = 125 kHz is interpreted as a logical ”zero”. Every
input signal with a frequency of fin = 250 kHz represents
a logical ”one”. To satisfy the truth table of a logical OR
gate, summarized in Table I, the frequency with which the
output neuron spiked is taken as the basis for interpreting the
functionality. If it spikes with a frequency of fout = 125 kHz, it
corresponds to a a logical ”zero”, but if it responds with spikes
with a frequency of fout = 250 kHz, these can be interpreted
as a logical ”one”.

TABLE I
TRUTH TABLE FOR AN OR-GATE

A fA(kHz) B fB(kHz) Y fY (kHz)

0 125 0 125 0 125

0 125 1 250 1 250

1 250 0 125 1 250

1 250 1 250 1 250

Fig. 6 demonstrates the simulation of the possible cases of
a logical operation of an OR gate. If the input signals A and
B correspond to a logical ”zero”, the output neuron responds
with the output signal Y = 0, i.e. it spikes at a frequency of
125 kHz. If one of the two inputs changes to a logical ”one”,
the response of the neuron changes to Y = 1, i.e. it spikes at
a frequency of 250 kHz, in each case. The same case occurs
if a logical ”one” is present at both inputs. Thus, the truth
table in Table I is fulfilled and the correct function of an OR
gate is established.
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Fig. 6. Simulation of the rate-encoded spiking neural network realizing the
function of an OR gate. The signals A (black) and B (blue) represent the
respective input signals at the input neurons N1 and N2. The output spikes
are represented by Y (red).

2) AND-Gate: The AND gate, similarly to the OR gate,
is constructed from three neurons, two input neurons (N1

and N2) and one output neuron (N3). However, producing
the functionality of a logical AND operation is not as
straightforward as in the case of an OR gate. In order for the
network to be encoded in the same way, synaptic weights
must be introduced in this case. However, since these do not
require the ability to change, as in most other applications of
SNNs, these can realized by using two resistors to regulate
the input current into the output neuron. The network
configuration is shown in Fig. 7.
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N1

N2

A

B

Y

B

Fig. 7. Network configuration for the AND-Gate, synaptic weights are
represented by resistors.

The coding is done in the same way as with the OR Gate.
In order to ensure the functionality of the network and to
fulfill the truth table II, the weights or sizes of the resistors
are chosen in such a way that only a complete excitation of
the output neuron can occur when the two input neurons fire
simultaneously. If only a single spike arrives at the output
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neuron, the membrane capacitor cannot be fully charged, so
that no spiking behaviour of the neuron should occur.

TABLE II
TRUTH TABLE FOR AN AND-GATE

A fA(kHz) B fB(kHz) Y fY (kHz)

0 125 0 125 0 125

0 125 1 250 0 125

1 250 0 125 0 125

1 250 1 250 1 250

The simulation results of the AND gate are shown in Fig. 8.
If there is a logical ”zero” at each of the two inputs (A and B),
the output neuron responds with Y = 0. If a logical ”one” is
present at each of the two inputs, the output neuron responds
with Y = 1. If a logical ”zero” and a logical ”one” are applied
to each of the inputs, the response can also be interpreted
as a logical ”zero”. However, it should be noted here that
”intermediate excitations” of the output neuron occur due to
the respective intermediate frequency of the logic ”one”. This
can be attributed to the fact that in the neuron model used
here, the membrane capacitor potential is equal to the spike
potential, so they are not separated from each other. In other
words, the input directly mirrors the output, so that while the
neuron is not fully excited and does not produce a proper spike,
it does receive a small excitation of the membrane capacitor,
but this remains below the set threshold voltage. If one uses
this configuration further to build more complex structures,
these ”intermediate excitations” do not pose a problem, as
they are filtered out by the next weighting at the latest. Thus,
the truth table in Table II is fulfilled and the logical operation
of the AND gate is established.
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Fig. 8. Simulation of the rate-encoded spiking neural network realizing
function of an AND gate. The signals A (black) and B (blue) represent the
respective input signals at the input neurons N1 and N2. The output spikes
are represented by Y (red).

III. MEASUREMENT RESULTS

Fig. 9 shows two sections of the manufactured chip. In
(a) the chip section is shown with the modified Izhikevich
neuron, the circuit consumes an area of 28µm × 31.5µm.

In (b) the chip section is shown with the two logic gates.
The OR gate consumes an area of 69µm × 75µm and the
AND gate consumes an area of 80µm × 80µm. It should be
noted that the chip area of the test chip is limited only by the
pads. Considerable chip area reduction is possible when more
neurons are interconnected and driven by an internal source.
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Fig. 9. (a) chip photo section of the modified Izhikevich neuron
(28µm × 31.5µm), b) chip photo section of the OR (69µm × 75µm) and
AND gate (80µm × 80µm).

A buffer, realized as a simple PMOS stage in a source-
follower configuration, is inserted between the output of the
neuron and the output pad for measurement purposes (not
shown in Fig. 1). Measured response of the neuron is shown in
Fig. 10. Spiking activity can be detected for all temperature
ranges at the correct time. Hence, neuron exhibits a highly
robust behavior of the output signal over the temperature
range. The circuit fulfills the automotive temperature range
requirement. The deviation from the original form of spikes
can be attributed to two effects: additional wiring parasitics
and capacitive coupling between the wires. This assumption
has been confirmed by resimulation and careful modeling of
parasitic capacitances. Additionally, Fig. 10 shows the temper-
ature behavior of the neuron for T = −40 °C; 25 °C; 125 °C.
For a fair comparison, both in simulation and measurement
we use the same values of control signals Vc, Vd, Vth, Vbias.

12 14 16 18 20

Fig. 10. Measured spiking response of the modified Izhikevich neuron at
temperatures T = −40 °C; 25 °C; 125 °C.

Figs. 11 and 12 show measurements of the rate-coded SNN-
based OR and AND gates shown in Figs. 5 and 7, respectively,
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at room temperature. Both circuits operate reliably and fulfill
the truth tables described in Tables I and II.
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Fig. 11. Measurement of the rate-encoded SNN realizing the function of an
OR gate. The signals A (black) and B (blue) represent the input signals at
the input neurons N1 and N2. The output spikes are represented by Y (red).
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Fig. 12. Measurement of the rate-encoded SNN realizing the function of an
AND gate. The signals A (black) and B (blue) represent the input signals at
the input neurons N1 and N2. The output spikes are represented by Y (red).

Fig. 13 shows measured output signals of OR and AND
gates at the two temperature extremes of −40 °C and 125 °C.

12 14 16 18

Fig. 13. Measured output signals of AND and OR SNN for the temperature
extremes of −40 °C and 125 °C.

It can be noticed clearly that the networks show spiking
activity when it is expected in each case for the respective sce-
narios. However, the amplitudes change slightly as expected
in the temperature simulation in Fig. 4. Additionally, the
discharge profile of OR gate gets sharper at a high temperature.

IV. CONCLUSION

This paper presents the first study of neural circuits with
respect to their temperature robustness for automotive appli-
cations. It is demonstrated that both the single neuron and two
network configurations work reliably over the entire tempera-
ture range. Modification of the Izhikevich neuron is shown to
enable broadband frequency tuning over the tuning voltages.
Additionally, we demonstrate a way to implement OR and
AND logic gates using rate coding in analog spiking neural
networks. Future work can build on these findings, making
the use of spiking neural networks tangible for automotive
applications.
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